Further information
Operation, application prerequisites and limitations
Mixing nozzles consist of a motive nozzle and a mixing section. The liquid motive medium introduced under pressure via the motive connection is usually taken from the tank and delivered into the liquid jet mixing nozzle by means of a mechanical pump mounted outside of the tank. In the motive nozzle the static pressure of the motive medium is converted into velocity generating a corresponding negative pressure at the suction openings which is utilised to draw in the so-called suction flow.
Suction and motive flow are intermixed intensively in this turbulent region at the motive nozzle outlet as well as in the adjoining mixing section and are subsequently supplied into the tank as mixed flow. The volume ratio between suction and motive flow is about 3:1. The mixed flow exits the mixing nozzle with relatively high velocity and encounters the liquid contained in the tank, which is subsequently entrained as a result of the mixed flow’s drag effect, so that finally the sum of motive flow, suction flow and drag flow keeps the liquid inside the tank moving.
Application prerequisites and limitations
Motive flow and suction flow are mixed in the mixing section behi nd the motive nozzle, so that a homogeneously mixed liquid jet develops in the mixing section due to high tur bulence resulting from motive and suction flow.
In case of liquids with physical properties like water, a mixin g ratio of motive flow to suction flow is 1:3. On account of its velocity and of the dragging jet effect resultin g therefrom, the mixed flow leaving the liquid jet mixing nozzle carries forward so much surrounding liquid that t he used motive flow is multiplied. In case of liquids with higher viscosity the mixing ratio and the dragging effect are decreased.
The limiting range for applying liquid jet mixing nozzles is reached when the viscosity of the liquid to be circulated does not allow a delivery with centrifugal pumps anymore. The m otive flow passed through the liquid mixing nozzles of a certain size depends on the efficient motive pressu re. If the motive liquid is removed from the mixing tank this efficient motive pressure is to be equated with the de livery head of the centrifugal pump after deduction of all pipe friction losses.
In case where the motive liquid is not to be removed from the mixing tank the liquid column above the liquid jet mixing nozzle outlet is to be taken into account for determinin g the efficient motive pressure.
Structure and function of tank mixing systems
The aim of Körting Hannover is to design customised tank mixing system solutions for each specific tank. The purpose of the tank mixing system is to generate a liquid circulation of the whole liquid volume which leads to complete mixing and prevents sedimentation. A guided directional flow will be generated by the mixing system. Therefore, flow velocities occur, which are higher than the sinking velocities of the particles in the liquid, so that settlement is avoided. The two examples in the figures below illustrate the principle of tank mixing systems:
|
|
The specific number of liquid jet mixing nozzles resulting from the tank mixing system dimensioning will be placed on two pipes close to the tank bottom and the tank wall. These two pipes follow the shape of the tank. For a round tank the pipes are semicircular whereas for a rectangular tank the pipes are straight. The required motive flow is supplied to the liquid jet mixing nozzles via these pipes. The motive flow pipes are situated oppositely to each other at two sides in the tank. With fixtures the pipes will be fixed above the tank bottom and with a certain distance to the tank wall. Pipe dimensioning will be according to normal flow velocities in order to keep the friction losses inside the pipes low. The size of each mixing nozzle, its alignment, e.g. the installation angle as well as the distance from one nozzle to another, are further results of the dimensioning.
One nozzle row will point alongside the tank bottom to generate the necessary flow velocities alongside this area. At the opposite side of the tank the second nozzle row points upwards which generates an upward flow alongside the tank wall. By means of this guided directional flows the whole liquid volume is moved. In order to save energy at low filling levels the nozzle row pointing upwards can be switched off.
Dependent on the properties of the liquid to be mixed every different nozzle size has a certain range with regard to the liquid to be moved. For very large tanks it may be necessary to place a third nozzle row in the middle of the tank bottom in order to generate the required flow velocities to cover the whole distance. In case of very high tanks the nozzle row pointing upwards may be positioned higher above the tank bottom to achieve optimum mixing of the whole liquid.
With the options of choosing different nozzle sizes, adjustment of nozzle rows according to the tank shape, modification of the nozzle distances and of being flexible concerning the operation of the different nozzle rows Körting Hannover AG is able to dimension the optimum tailor made tank mixing solution for every specific purpose. E.g. for full homogenisation, for prevention of settlements, for prevention from different temperature layers or for complete mixture of different liquids.
Properties of a tank mixing system for edible oil
The images below give a good impression of a complete tank mixing system in a storage tank for edible oil. 17 mixing nozzles made of stainless steel are installed nearly horizontally whereas 17 mixing nozzles are installed nearly vertically at the opposite side of the tank. The tank volume is 11000 m³ with a filling height of 25 m and a diameter of 24 m.
Example: cylindrical storage tank
- V = 11000 m³
- H = 25 m, D = 24 m
- 34 mixing nozzles stainless steel 2”
Alignment of a mixing system in a cylindrical storage tank for edible oil
The result of the Körting design is a sketch for the customer, which contains recommendations and information, so that the mixing system will be installed in the tank in an optimum way. In order to evaluate critical cases Körting Hannover AG uses CFD simulation (“Computational Fluid Dynamics”).
Advantages
- wear-resistant operation
- no maintenance in the tank
- no sealing problems
- low investment costs
- low energy input
- complete mixing of the tank content
- no unmixed dead zones
Example of energy saving potential by using Körting mixing systems:
The potential savings of energy costs are approx. 27000 € per year!
Tank dimensions
diameter |
27.6 m |
filling height |
10 m |
filling volume |
5983 m² |
Energy consumption
for mixing with conventional mixing system |
10 W/m³ |
for mixing with Körting mixing system |
4 W/m³ |
energy saving potential |
6 W/m³ |
Calculation
6 W/m³ * 5983 m³ |
= |
35.9 kW (35898 W) |
35.9 kW * 8760 h/a |
= |
314484 kWh/a |
314484 kWh/a * 8.6 Ct/kWh |
= |
27046,– €/a |
8.6 Ct/kWh = electricity costs for industrial customers in Germany, value for 2013